0=-16t^2+33t+9

Simple and best practice solution for 0=-16t^2+33t+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+33t+9 equation:



0=-16t^2+33t+9
We move all terms to the left:
0-(-16t^2+33t+9)=0
We add all the numbers together, and all the variables
-(-16t^2+33t+9)=0
We get rid of parentheses
16t^2-33t-9=0
a = 16; b = -33; c = -9;
Δ = b2-4ac
Δ = -332-4·16·(-9)
Δ = 1665
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1665}=\sqrt{9*185}=\sqrt{9}*\sqrt{185}=3\sqrt{185}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-3\sqrt{185}}{2*16}=\frac{33-3\sqrt{185}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+3\sqrt{185}}{2*16}=\frac{33+3\sqrt{185}}{32} $

See similar equations:

| 4(a+2)=8+4=a | | 3x+4x=35x= | | x=2+3+3x10 | | 15=6w-1 | | |3x-12|+4x=2x-2 | | 6u+17=10u-19 | | (x+8)⋅(x+9)= | | 17q+50=32q-100 | | N/3=2+n/5 | | 13j-1=8j+59 | | 80+9x=6(x+20) | | 3(2x-5)=2(3x-20 | | 4/5+x=1/3 | | 2(3x-5)=4(2x+6) | | 3x+2+112=90 | | 9z+10=6 | | 30a^2+3a=0 | | 8b-39=67b-98 | | 6-4y+3=2-5y | | 3q+36=12q-63 | | 10x-5=3(2x+2)+25 | | 40-9(x+4)+5x=-(4x-10) | | 5(2x-1)-4x-1=−12 | | 10h-64=11h-78 | | 7x+2=2(3x-4)x-10 | | 3(2x-3)+4(x+5)=8 | | 1. 8x+2=4x+10 | | -2/7*v=-10 | | 13s-83=4s+7 | | 4(2x-5)=6 | | 10h-47=6h-43 | | 5v-4=10v-84 |

Equations solver categories